时间:2022-12-10 00:06:02来源:新媒体
最近,OpenAI发布了免费机器人对话模型ChatGPT,一时间火爆全球,成为科技圈第一大热潮,短短一周吸粉便超过百万。ChatGPT也称为科技圈的必聊话题。
如此智能的机器人对话模型,仿佛与我们记忆中略显“笨拙”的机械式AI对话已经完全不同。在这些年里,人工智能创作内容(AIGC)已经飞速成长,甚至在很多领域大大超越了专家学者的精准性和博识水准。
图:与ChatGPT对话
同样在2022年,AIGC已经出圈过一次。
AI绘画凭借其独特的创意与便捷的创作工具迅速走红,甚至出现使用AI作画参赛获奖的新闻;同时,许多AIGC方面的公司正在飞速的成长,融易新媒体,获取一笔笔的融资,成为独角兽公司。
但是,在如火如荼的AIGC技术发展中,有一个问题却始终没有得到明确的解答,那就是AIGC虽然这么新颖、好玩,但是它的商业化价值到底如何,又能应用于哪些具体的场景呢?
本文就AIGC相关信息、落地应用与目前行业面临的问题进行解读,为那些对AIGC感兴趣的读者与投资人展现目前人工智能生成内容的发展图景。
2022: AIGC元年2022年,深度学习模型Diffusion扩散化模型的出现,直接推动了AIGC技术的突破性发展,许多基于StableDiffusion模型的应用纷纷入局。也正因如此,2022年被称为AIGC元年。
但在各类使用AIGC技术的应用大规模“井喷”之前,AIGC也曾经历了几十年的发展。
1950年,图灵提出了著名的“图灵测试”,给出了判定机器是否具有“智能”的方法,即机器是否能够模仿人类的思维方式来“生成”内容继而与人交互。
经过半个多世纪的发展,今天的人工智能不仅能够与人类进行互动,还可以进行写作、编曲、绘画、视频制作等创意工作。随着人工智能越来越多地被应用于内容创作,人工智能生成内容悄然兴起。
目前,对于AIGC这一概念的界定,尚无统一规范的定义。而国内产学研各界对于AIGC的理解是“继专业生成内容和用户生成内容之后,利用人工智能技术自动生成内容的新型生产方式”。
而结合人工智能的演进沿革,AIGC的发展历程大致可以分为三个阶段:
早期萌芽阶段(1950s-1990s),受限于当时的科技水平,AIGC仅限于小范围实验。1957 年,莱杰伦·希勒和伦纳德·艾萨克森完成历史第一支由计算机创作的弦乐四重奏《伊利亚克组曲》。1966年,约瑟夫·魏岑鲍姆和肯尼斯·科尔比开发了世界第一款可人机对话的机器人Eliza。80年代中期,IBM创造了语音控制打字机Tangora。
沉淀积累阶段(1990s-2010s),AIGC从实验性向实用性逐渐转变。2006年,深度学习算法、图形处理器、张量处理器等都取得了重大突破。2007年,世界第一部完全由人工智能创作的小说《1 The Road》问世。2012年,微软公开展示了一个全自动同声传译系统,可以自动将英文演讲者的内容通过语音识别、语言翻译、语音合成等技术生成中文语音。
快速发展阶段(2010s至今),深度学习模型不断迭代,AIGC突破性发展。2014年,对抗生产网络GAN出现。2021年,CLIP模型出现;OpenAI推出DALL-E,主要应用于文本与图像交互生成内容。2022年,深度学习模型Diffusion扩散化模型的出现。
新模型下的AIGC所向披靡过去,互联网的内容都是由用户生成、上传,AI只能协助人类完成一部分最简单、最基础的工作,无法独立生成内容,更不用提优质内容了。
但这一状况也因Diffusion扩散化模型的开源应用而被打破,AIGC成为了继UGC之后的又一大内容生成方式。
相较于UGC,AIGC的最大不同是新技术驱动了机器智能创作内容,这使得AIGC具有独特的技术特征,包括数据据量化、内容创造力、跨模态融合、认知交互力等,也正是这些独有的技术能力,让AIGC成为“不可替代”的新一代内容生成方式。
(1)数据巨量化:
AIGC丰富的“想象力”和惊为天人的“创作能力”,是在海量数据的基础上由计算机学习和模拟生成的,每一幅AI画作的背后都是无数的标注数据与训练。卷积神经网络和Transformer大模型的流行成功使深度学习模型参数量跃升至亿级,由此带来的数据巨量化推动了AIGC发展的进程。
如知名的计算机视觉项目ImageNet在众包任务中有超过25000人参与,标准图片超过1400万张;而OpenAI更是收集了4亿个文本图像配对数据进行预训练。在零样本学习成熟之前,AIGC通过巨量数据实现内容创作的发展路线仍难以撼动。
(2)内容创造力: