时间:2024-04-10 00:36:32来源:新媒体
而且,GitHub Copilo由于运行成本太高一直处于亏损状态,微软平均每月在每个用户身上要倒贴逾20美元,有些用户每月给微软带来的损失高达80美元。
这还是全世界最好模型的变现能力。作为对比,Google Cloud 2024年北美地区AI服务的业绩目标不过10亿美元,这个收入增量甚至不足以覆盖购买AI芯片的开支。
科技媒体The Information报道称,包括微软、亚马逊和Google在内的云厂商和其他销售该技术(指生成式AI)的公司,正在降低自己的预期。
能够拥抱科技巨头的大模型公司尚且如此,AI独角兽的日子就要更加惨淡了。
2024年3月,曾经的文生图巨头Stability AI的领导者辞职,这家初创公司2023年收入4420万美元,而支出就将近1000万美元,不足支出一半。同期,融资13亿美元的Inflection AI创始人Mustafa也因产品商业化表现不佳,带着核心研发团队加入了微软。曾经的NLP明星公司竹间智能受到大模型浪潮的冲击因经营困难在2月20日宣布停工停产六个月。
不久前,就连一直鄙视广告业务的AI搜索公司Perplexity,也准备开始卖广告了。Perplexity曾在公司首页上这样介绍自己:“搜索信息应该是一种直接、高效的体验,不受广告驱动模式的影响。我们之所以存在,是因为在信息过载的噪音中,明确需要一个平台来提供精准、以用户为中心的谜底,尤其在时间如此宝贵的时代。”
Perplexity妥协背后,是生成式AI商业化困境的现实体现。庞大的支出和微弱的收益很容易让人怀疑,AI是否只是一场随时会冷却的资本泡沫?
ARK 投资管理公司(ARK Investment Management)创始人兼首席执行官Cathie Wood在最近接受CNBC采访时称, "这些AI公司中的很多甚至没有产生正现金流的潜力"。
双线资本CEO、“新债王”杰弗里·冈拉克也警告称,AI股市的热度让他想起了1999年的互联网泡沫,并预测未来可能会引发通货膨胀和经济衰退。
03 不止于泡沫,生成式AI的故事仍在继续固然,生成式AI不乏泡沫的成分,但与1999年的互联网泡沫仍然有本质的区别。
从外部环境看,1999年的互联网泡沫主要发生在中小公司上。当时,纳斯达克没有一套规范明晰的上市规则,注册门槛过低。比如,阅读印刷服务公司Noosh上市时收入仅有68000美元,远远低于现在纳斯达克上市要求的75万美元的净利润标准。
在1996-2000年,纳斯达克盈利公司甚至不到10%,纳斯达克指数市盈率一度超过100倍。这一定程度上也就造成了2000年纳斯达克指数狂跌。
不同于2000年股市集中在中小公司上的非理性狂热,这次的“泡沫”主要集中在微软、谷歌、亚马逊等科技巨头身上,且这些公司平均市盈率仅27倍。这意味着,科技巨头有足够的财力基础和庞大的用户基数去消化“泡沫”所带的负面影响。
其次,当时的互联网发展与如今的AI行业也有着明显的差距。
在2000年,互联网仍只是一个遥远的概念,离落地有仍然有很远的距离。根据世界银行发布数据,互联网在1996年的用户基数仅4500万,也就是说,每一百个人里仅仅只有一个人能够接触互联网,互联网普及率不到1%,到2000年纳斯达克指数狂跌80%,这一数值也仅为7%。
那时所谓的互联网公司大多没什么核心技术,大部分人甚至都不知道互联网是什么,就疯狂下注。
Pets.com 就是一家在2000年2月上市的公司,但是作为一家宠物用品零售商,跟互联网基本没什么关联。尽管如此,其首次公开募股就募集了 8250万美元。自然而然,Pets.com在2000年11月上市不到一年就遭迫清算,沦为互联网泡沫退场浪潮里一个微小的缩影。
与互联网早期不同,生成式AI有着扎实的演进逻辑——即模型能力的持续迭代。
2024年还未过半,OpenAI在2月发布的“世界模拟器”sora就以强大的1min视频生成能力震惊世界,全民音乐AIsuno已经支持摇滚、说唱、谷歌各种风格的一键生成,月之暗面在半年时间内无损长文本由50万突破200万。每一次大模型能力的升级,都意味着用户场景的拓宽。
从落地情况看,AI现在已经拥有大规模的落地基础。比如,ChatGPT在推出不到半年的时间内,用户基数就已经达到18.1亿,将近当初互联网的40倍。
除了人们熟知的通用聊天外,生成式AI已经可以用于蛋白质设计、生物环境探测、石油勘测等实体经济领域。尽管去年生成式AI的营收只有30亿美元,远远不及研发费用。但要知道,同样的水平,SaaS行业花了十年才做到。