融易新媒体
快捷导航 融易新媒体
主页 > 科技 > IT业界 >

AI“闪耀”诺贝尔奖(3)

时间:2024-10-18 00:35:01来源:界面新闻

然而,也有人指出,当前蛋白质结构以及AI制药领域的基础理论仍旧不完备,无法覆盖实验结论。不过也有人寄希望于大模型在算力足够的情况下,能够直接总结规律合成新蛋白。

华南理工大学食品科学与工程学院陈文教授曾经和今年化学奖得主David Baker合作,他曾经求学过的实验室主要研究膜蛋白工作,会给David Baker提供一些建议,并对他设计的新型蛋白进行验证。

陈文也曾在Nature、Cell、Nature Protocols、Nature Communications、Angew Chem、JACS等高水平期刊发表论文,获得过哈佛医学院华人生命科学杰出科研奖和中华海外磁共振协会年度科学家奖。

在谈及David Baker获奖时,陈文以“令人信服”作为回应,“但物理奖给人工神经网络,化学奖给AlphaFold,这些都跟物理和化学没有太大的关系。”

陈文告诉界面新闻,David Baker的想法比较超前,他设计蛋白质,改变蛋白质的特性,包括设计可溶性的生物膜蛋白。“他设计蛋白的成功率和精准性逐年进步,现在已经能够根据部分需要设计蛋白质,也比较成功,只是广泛的产业应用还有待验证。

作为行业人士,陈文教授也指出,当前AlphaFold3的部分预测不准确,并且预测蛋白与其他分子的相互作用比较有限。

以前的科学研究范式很可能遭AI打破

AI在诺奖的渗透,也预示着交叉学科时代正在到来。

今年9月,2000年图灵奖得主、中国科学院院士、清华大学教授姚期智在一场公开论坛上表示,AI最明显的趋势有两个,融易新媒体消息,一个是从弱智能走向通用智能。另一个是学科间的交叉赋能,使得本来就明显学科交叉的工作,变得更加活跃和重要。

“必须承认,在人工智能发展的早期阶段,物理学家确实提供了独特的研究思路,并作出了许多贡献。”姚尧解释道,启发式神经网络其实是沿着玻尔兹曼的统计物理思想一路发展起来的,它的发展已有近两百年的历史,是属于传统物理的研究内容,只是拓展到了新的研究内涵。

这显然涉及的是一个交叉学科。人工智能领域融合了物理的思想,同时也包含了计算机科学、认知心理学以及神经科学等多方面的知识,是一个综合性很强的领域,难以将其归属于单一学科。

物理、化学、生理学是诺贝尔奖最初的三大领域,但如今学科界限与诺贝尔时代相比已大不相同。如今的科研工作者往往跨越多个学科领域进行研究,物理学家也可能发表化学、材料科学、信息学乃至计算机科学的论文。

这种跨学科合作已成为常态。

即使是像计算物理这样看似传统的领域,也在与生物物理紧密结合。一些顶尖学府如麻省理工学院(MIT)或其他知名机构,已经开始将计算物理纳入生物物理的专业范围内,反映出计算与复杂网络理论的紧密联系。

随着AI在科学研究中的地位日益凸显,学术界也开始重视AI教育,许多传统物理专业的课程中开始大量引入人工智能相关内容。这意味着新一代的科研人员将在教育阶段就开始接触并习惯使用AI的思维方式来探索自然规律。

由此可见,交叉学科研究已成为不可避免的趋势,学科间的融合与调整是必然的发展方向。

“物理学这一基础学科的边界也在不断拓展。”姚尧对界面新闻称。

他指出,近十七八年来,诺贝尔物理学奖并非总是授予传统物理学的成就。除了引力波这种毋庸置疑的重大突破外,多数奖项颁发给了交叉学科的研究成果,例如气象物理、阿秒激光等领域,甚至是量子纠缠,其中也包含大量信息学的内容,而不完全是传统物理学。

2021年,诺贝尔物理学奖颁发给了气候变化领域的研究,这本身就是一个交叉学科。“气候变化是一个非常大的时代议题。2024年颁给AI,也是诺贝尔奖顺应时代发展的潮流,即当前人类发展面临重大问题可能的解决办法。”刘易安说。


近期热点

【特写】“新”富士康回来了 10-18

vivo给AI手机打了个样 10-18

科技早报|特斯拉发布无人驾驶出租车Cybercab;海康威视否认公 10-18

蚂蚁保启用代言人:业务与品牌独立性进一步强化 10-18

AI“闪耀”诺贝尔奖 10-18

热门文章
热点 热点追踪 网站首页 热点 观点