时间:2024-10-12 11:45:49来源:界面新闻
孙伟杰认为接下来会有两个重要趋势,首先,在AI解决了一个究竟科学问题后,未来外界会看到越来越多的类似成果;其次,整个基础科学研究的范式已经发生改变,在未来,AI与学科领域认知和先进实验手段相结合,将成为主流的科研范式。
理论上来说,AI4S走上诺奖风口不一定会让资本和创业者迅速涌入某一个赛道,但它一定有自己潜移默化的影响,孙伟杰认为它最根本的影响将是加强大众对AI4S的共识。
这种共识会加速科研领域的范式转变,让研究机构更快把精力投入转移到AI4S的路线上,这也就意味着AI4S基础设施将变得更加重要。在这个“从0到1”的转变背后,跨学科的研究壁垒和人才培养可能是其中的核心难点。
科研之外,就AI4S的商业格局而言,以深势科技为代表的基础设施建设企业处于中游,这里的行业生态其实还相对早期,但AI4S的上下游产业生态已经相对成熟和庞大,其中上游包括以AI芯片、云计算服务为代表的基础设施,下游则对应生命科学和物质科学两大门类中的众多场景,单就AI制药而言已包含多家上市公司。
其中,以DeepMind和深势科技为代表的公司,其商业模式有高度重叠的部分,即为有基础科研需求的产业和企业提供AI4S研究工具和平台。孙伟杰预估,这里对应一个万亿级全球市场,国内市场也至少是千亿级别。
中美在这一落地环节上存在差异。就生物医药产业而言,美国相对中国市场更加完善,且市场规模更大。而在材料、电池、能源等制造业领域,中国企业的优势非常明显。不过在不同市场,AI4S服务客户的底层技术是相通的,这意味着企业要针对不同领域采取不同的市场策略。
以深势科技自身而言,团队的下一步技术突破方向是其“深势宇知”科学大模型体系,要完成分子、原子、基因、蛋白这四种模态的统一,使其对于无论小分子、大分子还是高分子都具备全面的表征和性质预测的能力,这将是一个“有机分子宇宙”的通用模型,有机会对上述科研工作产生重大的推动力。
此前,深势科技首席科学家张林峰在今年上半年接受界面新闻采访时,曾判断AI4S领域的科学大模型正处于GPT-2阶段,孙伟杰表示,GPT-3时刻可能会出现在2025年。在这个阶段,模型的核心任务仍是学到更多科学规律。而在GPT-3之后,它的下一个进化目标是如何对现实世界的数据做出反馈。
在孙伟杰看来,科学研究的范式已经遭AI改变了,但这种改变还不均衡,不同学科和不同人群之间的快慢进度会不一样。而怎么让AI对科研的改变变得更普世和通用,这是深势科技这类公司的使命。
作为少数定位AI4S平台化建设的公司,孙伟杰不讳言在诺奖名单公布后得到了外界的诸多关注,这当中也包括投资人。对于这件事在融资和商务拓展上的直观影响,他表示接下来可能“敲门”会更加容易,但无论是融资还是商务拓展最终一定是符合市场和商业逻辑。
对于这个领域的信仰者而言,在未来,所有传统研发手段都值得遭AI for Science重新升级一遍。
“本质上是大家拥有了一台更高水平的挖矿机,之前可能只能挖地表一两米,但是剩下的这些都是深矿,需要更准的探测技术和更强的挖掘能力。”孙伟杰说,“而这就是AI for Science将会带给大家的。”