时间:2023-04-19 14:40:03来源:界面新闻
方汉:对的,资源是一张门票,比方说没有2000张GPU,你连训练都做不了,但有资源之后,那就是拼工程上的经验。工程上的技巧和经验是大模型竞争的主要因素,比拼的是做实验的速度和人才的厚度。
界面新闻:如何理解工程经验?
方汉:以训练数据为例,其实业界最难的不是找数据,而是如何丢数据。什么样的数据不用?筛选数据的标准是什么?如何做数据的剪枝、清洗等。
通过筛选数据调整参数、改进模型设计才是最核心的机密,这也是OpenAI没有在论文中公开的核心技术。
界面新闻: 据悉GPT-3.5训练1750参数所用的3000多亿单词训练语料有60%来自于C4数据集(谷歌开源的Colossal Clean Crawled Corpus)。C4数据集含有上万亿的经过清洗的、分类规整的英文单词,而目前国内已知的最大中文语料库TUCNews(清华大学开发)只有7亿左右的中文词汇,如何看待这种落差?
方汉:公共的大型中文语料数据库的缺失是客观存在的差距,也不是一时半会能赶上的。我觉得国家层面也会意识到中文数据的重要性,未来会进行政策上的改进。
基本上各家的训练语料库也不会公开,所以我认为,短时间内大模型的涌现不会让中文语料数据库的改观特别大。
还有一个值得重视的现象,由于大模型本身的能力能够进行语言间的知识迁移,这就导致能够生成海量的中文语料。未来如何看待以及管理AI生成的中文语料库是重要问题。
界面新闻:现在大公司都在抢发产品,未来大模型是否会成为主流大厂人手一个的标配,进而使该领域进入到割据封闭的壁垒生态?
方汉: 虽然行业还是非常早期的抢跑入场阶段,但未来会如同操作系统的发展历史一样,Windows与Linux:大厂会拥有质量最高的大模型,开源界也会出现相对质量还OK的模型,融易新媒体,这样的开源大模型会成为中小型企业、用户的选择,帮助他们基于这些大模型去做自己的二次开发和工作。
未来的大模型生态主要有两类参与者,一类做底层模型,一类做上层的应用产品。 我认为这个生态会相对均衡,不会一家独大。