融易新媒体
快捷导航 融易新媒体
主页 > 产业 > 医药 >

AI看病,离我们还有多远?(2)

时间:2024-06-27 16:45:01来源:中国经济网

  “我们开发了自助验光配镜、远程验光配镜以及互联网医院虚拟视光师和眼科医生,进行近视眼的咨询与防治,但都还不够成熟,仍在实践中完善。”某互联网医院院长向记者表示。

  谈及现状,王国鑫介绍,目前市场上还尚未有落地的健康大模型产品,要实现商业化,行业还面临诸多挑战。一方面,由于医疗天然的垂直性,又专又宽的行业特性,使得模型训练难度大;另一方面,医疗数据非结构性特点也是大模型落地的一大难点。此外,目前健康大模型标准还是空白,用怎样的标准评价健康大模型,还有待相关方面一起去推进。

  朱晋也坦言:“AI医疗大模型要落地应用还面临许多挑战,如AI技术还不够完美,应用伦理、数据孤岛、数据安全、隐私保护、审核机制、评价标准等问题还有待完善。”

  “目前医疗AI可以扮演数据库、知识库的角色。当前AI医疗领域的困境之一,在于技术发展同质化严重,数据、算法的优势尚未得到体现,中国AI医疗器械95%的研究或产出都在医学影像类,在医疗机器人、知识库、自然语言处理等领域研究相对不足,关于决策规则的研究几近空白。”针对行业发展,王静直言:“医疗AI主要依靠患者的问诊数据,缺少查体过程。一方面,躯体类疾病可能会影响患者的感觉,使其表述出来的感受与病情严重程度不相符;另一方面,不同疾病也有相似症状,只靠询问很难得到准确结果。我们坚定认为,AI并不可以、也不可能取代医生,不应有处方权。一旦涉及诊断、开处方,必须有真人医生参与其中。因此,从研发到进入临床,医疗大语言模型还有很长一段路走,但AI一定是未来医疗格局的一分子。患者距离真正实现AI看病,还需等待相关部门建立新的监管框架,在法律标准下进行。”

  多方协同,AI看病不是梦

  一本正经地胡说八道、患者隐私泄露……在AI的发展中,准确与安全一直是行业痛点和重点。

  对此,康波表示,目前学界和业界专家也在通过建立围栏技术等方式避免此类情况的产生。展望未来,康波说:“目前基于生成式智能的辅助诊断系统,由于融合了AI的复杂提取能力和严谨的专业知识,具备了可解释基础的生产力能力,同时也得到了国家的鼓励。其中,国家卫生健康委发布了《医疗机构临床决策支持系统应用管理规范(试行)》,也在强调人工智能加医学知识,为智慧化医院建设提供助力,我们在这方面也在开展实践,预期年内会有一些落地成效。”

  “在未来,AI医疗大模型将完整融入医疗保健行业,成为推动全球健康产业发展的重要力量。新一代人工智能有可能改变医疗服务的提供方式,重构医疗行业。”朱晋说。

  记者注意到,近段时间来,在健康大模型的这股发展浪潮中,多方在积极推进。比如在规范上,去年由中国信息通信研究院牵头,国家卫生健康委医疗服务指导管理中心、北京协和医院等20余家相关产学研用单位共同研究起草的《医疗健康行业大模型应用技术要求第1部分:医院侧医疗服务》、《医疗健康行业大模型应用技术要求第2部分:患者侧医疗服务》等2项技术要求正式发布,成为业界首个围绕医疗健康领域提出的大模型应用技术标准规范。同时,多地发文,支持医疗大模型开发和落地应用。相信多方协同下,将会有越来越多的健康大模型尽早落地,造福人民健康。


近期热点

国家卫健委:全国1163家县医院达到三级医院医疗服务能力 06-27

AI看病,离我们还有多远? 06-27

国家卫生健康委:持续推动城市医疗资源下沉 06-23

医药行业并购整合活跃 大手笔收购频现 06-23

打破垄断、时间窗扩大至24小时 国产溶栓药取得新突破 06-23

热门文章
热点 热点追踪 网站首页 热点 观点